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Abstract—This paper tackles the computational problem of
Convolutional Neural Networks (CNN), which is a popular deep
learning architecture used with images. The goal is to understand
how parallelism benefits the various subroutines corresponding to
the convolution layer. To that end, both OpenMP and CUDA are
explored. This work experiments with multiple design choices
with the goal of optimizing on the speedup over the basic
sequential implementation. These design choices are discussed in
detail with the reasonings. The paper ends with some directions
on extending the current work.

Index Terms—Convolutional Neural Networks, Parallelism,
OpenMP, CUDA, High Performance Computing, Deep Learning,
Image Processing, CPU, GPU

I. INTRODUCTION

A. Problem Statement

Convolution neural networks (CNNs) have been incorpo-
rated into resource-constrained edge devices to intelligently
manage and process local data coming from a variety of
sensors [1]. To that end, thread parallelism has been used
to boost the performance of neural networks as the software
architecture of neural networks and the lack of dependency
between neurons in each inference layer provide significant
opportunity for parallelism in a multiprocessor platform.

The concept of parallelism in the case of deep neural
networks is a quite popular research problem. [2] implements a
CNN architecture with OpenMP for the detection of corn leaf
diseases. Similarly parallelism for real-time object detection by
[3[] is also implemented using OpenMP and is an important use
case, when it comes to systems that require real time detection
like autonomous vehicles. Our work has been inspired by [4]]
that utilizes parallelism for Handwritten Character Recognition
(HCR).

Our paper focuses on studying the effect of various con-
figurations on the speedups for the OpenMP and CUDA
implementations of a CNN architecture for image classifi-
cation. Through this exercise, we expect to gain insights on
which approaches work and which do not. The implementation
choices would then be discussed in detail. In summary, we
intend to optimally utilize the hardware to achieve the best
possible speedups for CNNs.

Carnegie Mellon University
Pittsburgh, PA
ekmin @andrew.cmu.edu

Carnegie Mellon University
Pittsburgh, PA
aayasi@andrew.cmu.edu

B. Convolutional Neural Networks

Convolutional Neural Networks are a type of feed-forward
neural networks that are widely used for image processing
tasks. With an input layer, hidden layers and an output layer,
the hidden layers consist of one or more layers that perform
convolutions. As the convolution kernel slides along the input
matrix, the convolution operation generates a feature map,
which in turn contributes to the input of the next layer. This
is followed by other layers such as pooling layers and fully
connected layers.

Microprocessor development efforts continue to concentrate
on adding cores rather than increasing single-thread perfor-
mance [5]. Hence, it’s essential to equip computationally
complex tasks to fully utilize the capabilities of advanced
processing units by enabling parallelism.

The parallelism in the convolution operation is highly scal-
able in terms of the number of threads. Each component can be
broken down into a large number of small independent opera-
tions. This makes it ideal for GPU implementation which has
a lot more threads than the CPU. The main focus of this paper
is the parallelization of a convolutional layer that performs an
inner product of several filters with the input matrix/ image.
For the purpose of exploring the parallelized implementations,
the baseline chosen was a codebase that implements CNN in
C++. The baseline consists of the inference performance over
the MNIST test dataset.

C. Farallelism Analysis

For this paper, the benefits of parallelism for CNNs is
mainly analyzed for inference. Typically, CNN inference is
a resource-hungry task as intermediate results and weights
take a lot of memory footprint, and various operations require
massive computation [8[]. Hence, parallelism of CNN inference
is an interesting problem and this is explored through OpenMP
and CUDA programming.

OpenMP (Open Multi-Processing) [9]] is an API that sup-
ports multi-platform shared-memory multiprocessing program-
ming in C, C++, and Fortran on many platforms, instruction-
set architectures and operating systems. It consists of a set
of compiler directives, library routines, and environment vari-
ables that influence run-time behavior.



Compute Unified Device Architecture (CUDA) [10] is a par-
allel computing platform and API that allows software to use
GPUs for accelerated general-purpose processing, an approach
called general-purpose computing on GPUs (GPGPU). CUDA
is designed to work with programming languages such as C,
C++, Fortran and Python. CUDA-powered GPUs also support
programming frameworks such as OpenMP, OpenACC and
OpenCL.

In the interest of achieving parallelism, there are different
existing methods to achieve the same. Data parallelism is the
most common form of parallelism due to its simplicity, for
which the dataset is split into several shards, and each shard
allocated to a device. However, there could be redundancy
issues due to the model weights being shared across multiple
devices.

Another paradigm of parallelism is model parallelism [[7],
where the model is split and distributed over an array of
devices. This methodology will be the core of our CUDA
implementation. The CNN subroutine we mainly focused on
parallelizing is the Convolution Layer. It has been found that
implementing parallelism for the other subroutines including
fully connected layer and pooling, did not really improve the
performance, as will be discussed further in the paper.

The Convolution operatimﬂ is visualized in figure It
can be broken down into two components - First is the
element wise multiplication of the filter weights with pixels
in the window and summing the products. Second is the
movement of the filters across the dimensions of the image.
Both the components are completely independent since they
are computing different segments on the image. Each window
leads to a new pixel in the resulting image which allows
us to compute each pixel in parallel. Hence, the convolution
operation is a great candidate for implementing parallelism for
CNNE.

D. Dataset

Convolutional Neural Networks have gained popularity for
their image processing applications over the years. Hence,
to explore parallelism, we used CNN for the simple task
of image classification. To that end, the MNIST database
(Modified National Institute of Standards and Technology
database) which is a large database of handwritten digits, is
used.

The Modified NIST database [6] was constructed from
NIST’s Special Database 3 and Special Database 1 which
contain binary images of handwritten digits. Being a subset of
a larger set available from NIST, the database has a training
set of 60,000 examples and a test set of 10,000 examples.
The digits have been size-normalized and centered in a fixed-
size image. The images were centered in a 28 x 28 image by
computing the center of mass of the pixels, and translating the
image so as to position this point at the center of the 28 x 28
field. The dataset is popular for pattern recognition given that
minimal effort is required for preprocessing and formatting.

Tmage Credits: Intuitively Understanding Convolutions for Deep Learning

Fig. 1: Visualization of the Convolution Operation

Fig. 2: MNIST Dataset

II. FINAL DESIGN

A. Hardware Resources

Throughout this paper, our hardware platform for the base-
line as well as our parallel implementations is the ECE
CMU machine (ECE019). All the authors have used the same
machine for development and experimentation. This machine
is equipped with the Intel(R) Xeon(R) Silver 4208 CPU and
the Nvidia Tesla T4 GPU [11]. The details of the underlying
resources are included in tables [[l and [


https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

Parameter Value
CPU Architecture x86_64
Number of CPUs 32

Number of Threads per core 2
Number of Cores per socket 8
Number of Sockets 2
Number of NUMA nodes 2

TABLE I: Details of the CPU architecture

Parameter Value
GPU Architecture Turing Architecture
GPU Memory 15360 MiB
Number of streaming multiprocessor (SMs) 40
Number of CUDA cores 2560
Number of Tensor cores 320
Peak single precision performance 8.1 TFLOPS

TABLE II: Details of the GPU architecture

B. Baseline

The baseline implementation used in this paper is sim-
ple_cnrﬂ As the name suggests, this is a minimal sequential
C++ implementation of the convolutional neural networks.
The codebase does not parallelize the application and we
look into every opportunity to speed up using our OpenMP
and CUDA extensions. The comparison is based on the
inference performance over the MNIST test dataset which
consists of 10,000 samples. The baseline yields deterministic
results for inference, therefore we compare our parallelized
implementation for correctness with this. The accuracy of the
model trained using the baseline is 96.55%. We obtain the
same results using our parallelized implementations. Figure
displays the performance numbers across different data sizes.
As expected, the computation time grows linearly with the size
of the dataset. The total computation time for the baseline over
the complete test dataset is 6543.54 milliseconds.

C. OpenMP Implementation

In the context of OpenMP, we primarily explore data paral-
lelism with respect to the convolution and the fully-connected
layers. This involves parallelly computing the output for each
input image. The performance is analysed across three dimen-
sions: (1) Number of Threads, (2) Thread Affinity, and (3)
OpenMP Places. Since we saw limited benefits of parallelism
on the fully-connected layer, we focused on the convolution
layer for (2) and (3).

D. CUDA Implementation

As explained in Section 1 (C), the Convolution operation has
great scope for parallelism. Moreover, the parallelism is highly
scalable in terms of the number of threads. We can break
each component into a large number of small independent
operations. In the CUDA programming model, the GPU is
treated as a co-processor onto which an application running on
a CPU can launch a massively parallel compute kernel [[12]. In
this implementation, we use the banked shared memory, which
is the second fastest memory on the GPU after the registers.

2Baseline Link: https:/github.com/can1357/simple_cnn
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Fig. 3: Baseline Performance

1) Parallelizing Input Pixels: The initial direction was to
use each thread to perform computations corresponding to
one input pixel in a window. Hence, each thread performs
the scalar multiplication, followed by summation across the
window. However, this presents three problems:

(a) The reduction of sum across the window is expensive. It
offsets the benefits provided by the parallel computation
for the window by introducing an implicit barrier.

(b) This requires an extremely large number of threads: 16 x
625 pixels x 8 filters = 80000 threads for a 28 x 28 input
image convolved with 4 x 4 filters, 8 in number.

(c) Resolving the bank conflicts in shared memory becomes
intractable. This results in limited benefits of using shared
memory to speedup the read/write access.

2) Parallelizing Output Pixels: Due to the challenges
caused by the previous approach, we instead decided to
parallelize each output pixel. This implies that each thread now
sequentially traverses through a single window and computes
its corresponding output pixel. Although this might seem to be
less parallel than the previous approach, it has several benefits
which leads to an overall improved performance with lesser
requirement for resources.

(a) There is no reduction of sum involved. This is because
each thread computes its own sum which leads to truly
independent operations across the threads.

(b) This approach requires a total of only 625 pixels x
8 filters = 5000 threads for a 28 x 28 input image
convolved with 4 x 4 filters, 8 in number.

(c) Each thread now computes its own output pixel and
the image is stored in a row major order in the shared
memory. As a result each thread in a warp accesses
elements from different banks, resulting in no bank
conflict. This does not require a sophisticated design of
the intermediate layout of the shared memory, extracting
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Fig. 4: OpenMP Performance

the best performance out of it.

3) Using multiple streaming multiprocessors: Our interme-
diate CUDA implementation uses a single streaming multi-
processor (SM) for computing 8 filter convolutions. However,
each filter convolution is again independent of each other and
can further be parallelized. Hence, we analysed the speedup
achieved by parallelizing the filter convolutions on multiple
SMs, with the help of thread blocks.

III. PERFORMANCE RESULTS
A. OpenMP Implementation

Figure [4] shows the plot for the speedup with the number
of threads. We observe that the speedup increases with the
addition of threads upto 8 threads, after which it drops. This
implies that the ideal balance between computation workload
size and overhead of parallelism seems to be at 8 threads in
which afterwards, the overhead starts to overshadow any ben-
efits. Morever, as we further increase the number of threads,
they could also be possibly competing for resources. The plot
only shows the performance for parallelizing the convolutional
layer. We attempted to add more threads to ReLU and fully
connected layers but we observed either degraded or nearly
equal performance from before.

The results for our experiments with Thread Affinity and
OpenMP Places are summarized in figure[5] The only mapping
of software to hardware thread that contributes a significant
difference in speedup, with 4 threads, are threads that are
spread out. This makes intuitive sense because this config-
uration places threads as far as possible hardware wise which
likely narrows the possibility of threads taking advantage of
locality from L1 cache or the LLC. All threads need to
retrieve data from main memory. The rest of the configurations
are nearly identical since the number of possible places are
narrowed and the mappings are essentially the same.

OMP_PROC_BIND

Fig. 5: Thread Affinity and OpenMP Places
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B. CUDA Implementation

Figure [6] displays the speedup achieved through the use
of multiple streaming multiprocessors. Though we cannot
determine whether each thread block runs on a separate SM
every time, we observe consistent results in every run. Note
that the use of n thread blocks implies that 8/n filters are
computed by each thread block. There is a clear increasing
trend on the speedup with the addition of thread blocks,
implying that our approach is scalable with respect to the
number of SMs. This increase is not linear though, which
we attribute to the overhead of data transfer on the GPU. The
copy from the main memory to the shared memory cannot be
sped up with the addition of more SMs because each SM has
its own shared memory.



Implementation | Time(ms) | Speedup
Baseline 6543.54 1
OpenMP 1546.85 423

CUDA 88.5772 73.87

TABLE III: Summary of best performances

In table we summarize the best performances achieved
through our OpenMP and CUDA implmentations.

IV. FUTURE DIRECTIONS
A. Size of problem

Through this work, we would like to restate that “Paral-
lelism is not free” and it is important that the amount of work
should be large enough for the overhead from spawning and
coordinating multiple threads to amortize. Currently, the size
of the images is 28 x 28 which is not very large compared
to those seen in daily life today. While significant speedups
are observed through our implementations, these would be
much greater if we work with larger images. For instance,
[13] exploits parallelism within the spatial domain allowing
scaling to continue beyond the mini-batch size. Training
deep nets on large data is an HPC problem, and tackling it
requires exploiting as much parallelism as possible. It might
be interesting to assess the scalability of this work over the
ImageNet [14] dataset whose images are of size 469 x 387.

B. Data and Model Parallelism

In this paper, data parallelism is explored in the OpenMP
implementation and model parallelism is explored in the
CUDA implementation. This work can be extended by com-
bining the two approaches in a heterogeneous setup as ex-
plored in [[15]. This could lead to an even better performance
and can be achieved with the help of task parallelism on the
CPU and streams on the GPU.
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