
Project Final Report

Course: Optimization

(18-460/18-660)

Date: 5th May 2023

Reported by:

Atharva Anand Joshi (atharvaa@andrew.cmu.edu)

Ketan Ramaneti (kramanet@andrew.cmu.edu)

mailto:atharvaa@andrew.cmu.edu
mailto:kramanet@andrew.cmu.edu

Motivation
The Newton method is a well-known optimization algorithm that leverages second-order information by
incorporating the Hessian of the objective function in addition to the gradient during the update step. This
results in a second-order method that can achieve very fast quadratic convergence in terms of the number
of iterations required. Furthermore, in its pure phase, the Newton method's convergence is independent of
the condition number, making it theoretically superior to gradient-based methods.

Despite its theoretical advantages, in practice, the Newton method often does not perform as well as
expected. This is due to the significant computational and memory resources required to compute the
Hessian and its inverse, particularly for high-dimensional problems. Additionally, the objective function
must be twice differentiable, and the Hessian must be positive definite for the method to be applicable.

As a result, it is not used as widely as gradient-based methods. Our objective in this project has been to
study and evaluate Quasi-Newton approaches that mitigate some of these problems. The approach we are
primarily exploring is an efficient stochastic version of the BFGS method, which can be used with deep
neural networks.

Complexity per iteration Newton Method Quasi Newton (L-BFGS) Gradient Descent

Memory O(n2) O(n) O(n)

Computation O(n3) O(n2) O(n)

Background
Quasi-Newton methods essentially provide an effective and practical way to approximate the Hessian
matrix. We can formulate general update equation that can be expressed as x(k+1) = x(k) –
𝜶Bk

-1∇f(x(k)). Here Bk can be any positive definite matrix. If Bk is the identity matrix, the update
equation reduces to that of gradient descent, which is the most popular algorithm used for convex as well
as non-convex problems. The identity matrix however does not bear any information about the curvature
of the function. As a result, gradient-based methods cannot achieve convergence rates better than linear.

Another option for Bk is the true Hessian of the objective function, which is what is used in the Newton
method. An important property of the Hessian is that it globally encodes the curvature information about
the function. As a result we get a very fast quadratic convergence in the pure phase. However, as we have
discussed earlier, computing the Hessian and inverting it is very expensive. We are therefore looking for
an alternative approximation of the Hessian that has the following properties:

Local curvature information: The approximated gradient computed for x(k) in the neighborhood of the
current x(k+1) should match the actual gradient of x(k). Note that this does not have to be true for all the
points in the domain of f. Let us consider a quadratic approximation of the function f(x(k) + d) ~ mK(d) =
f(x(k)) +∇f(x(k))Td + ½ * dTBkd. We require that∇mK(𝜶Bk

-1∇f(x(k))) =∇f(x(k)).

Computation: The approximation can be computed significantly faster than the Hessian.

Invertibility: The approximation computed at each iteration must be symmetric and positive definite. We
would be using the inverse of the approximation in the update equations.

BFGS Algorithm:
The Broyden–Fletcher–Goldfarb–Shanno algorithm is one of the most popular quasi newton methods. We
can formulate the above-mentioned properties as a matrix optimization problem:

Note that we are directly optimizing for the inverse of Bk
-1. This is to avoid the inversion operation, which

is often the bottleneck computation. It is assumed that the Bk
-1 would not change much in every iteration.

Therefore, the objective function is minimizing the distance between Bk+1
-1 and Bk

-1. The distance metric
used here is the Frobenius norm. The first constraint requires Bk+1

-1 to be symmetric. The second
constraint is known as the secant equation. Here ∆xk = (xk+1 – xk) and yk = ∇f(xk+1) - ∇f(xk). This
constraint corresponds to the property of encoding local curvature information and is derived from the
same. A solution obtained for this problem is as follows:

Note that the solution Bk+1
-1 is symmetric and positive semi definite only if Bk

-1 is symmetric and positive
semi definite. Also, the inner product of ∆xk and yk should be non negative, which is true for convex
problems. In case of non-convex problems, a few adjustments are made to meet this condition as we shall
see in the next section.

Main Idea

The paper we followed for our project implementation is [1]. The authors considered a feed-forward Deep
Neural Network(DNN) with L layers, defined by weight matrices , activation functions for

and a Loss function . For a given data-point , the loss between the
output of the DNN and y is a non-convex function of . Algorithm 1
describes the network's forward and backward pass for a single input data point

The authors used Kronecker-factored approach to store the gradients and the Hessians from the
feed-forward DNN. Considering a dataset of points indexed from , we have

Based on the Kronecker-factored structural approximation, as the QN approximation

to where and are positive definite approximations to and ,
respectively. Using this layer-wise block-diagonal approximation to the Hessian, a step in the algorithm
for each layer is computed as

where denotes the estimate to and is the learning rate. After computing and

performing another forward/backward pass, the method computes or updates and as follows:

https://www.codecogs.com/eqnedit.php?latex=W_i#0
https://www.codecogs.com/eqnedit.php?latex=%5Cphi_l#0
https://www.codecogs.com/eqnedit.php?latex=l%5Cin%20%5C%7B1%2C2%2C%5Cldots%20L%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathcal%7BL%7D#0
https://www.codecogs.com/eqnedit.php?latex=(x%2C%20y)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathcal%7BL%7D(a_L%2C%20y)#0
https://www.codecogs.com/eqnedit.php?latex=a_L#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctheta%20%3D%5Bvec%20(W_1)%20%2C%20%5Cldots%20%2C%20vec%20(W_L)%5D#0
https://www.codecogs.com/eqnedit.php?latex=(x%2Cy).#0
https://www.codecogs.com/eqnedit.php?latex=I#0
https://www.codecogs.com/eqnedit.php?latex=i%20%3D%201%2C%20%5Cldots%2C%20I#0
https://www.codecogs.com/eqnedit.php?latex=H%5El%20%3D%20H%5El_a%20%5Cbigotimes%20H_g%5El#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbb%7BE%7D_i%5B%5Cnabla%5E2f_l(i)%5D%5E%7B-1%7D%2C#0
https://www.codecogs.com/eqnedit.php?latex=H%5El_a#0
https://www.codecogs.com/eqnedit.php?latex=H%5El_g#0
https://www.codecogs.com/eqnedit.php?latex=A_l%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=G_l%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=l#0
https://www.codecogs.com/eqnedit.php?latex=%5Cwidehat%7B%5Cnabla%20f_l%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbb%7BE%7D_i%5B%5Cnabla%20f_l(i)%5D#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha#0
https://www.codecogs.com/eqnedit.php?latex=W_l%5E%2B#0
https://www.codecogs.com/eqnedit.php?latex=H_a%5El#0
https://www.codecogs.com/eqnedit.php?latex=H_g%5El#0

BFGS and L-BFGS for Gl

Damped BFGS Updating. It is well-known that training a DNN is a non-convex optimization problem.
This non-convexity manifests in the fact that often does not hold. Thus, for the BFGS update of

, the approximation to , to remain positive-definite, it is important to ensure . Due
to the stochastic setting, ensuring this condition by line-search, as is done in deterministic settings, is
impractical. In addition, due to the large changes in curvature in DNN models that occur as the parameters

are varied, large changes to as it is updated are also to be supressed. To deal with both of these issues,
a double damping (DD) procedure (Algorithm 3) is proposed, which is based upon Powell’s

damped-BFGS approach, for modifying the pair. To motivate Algorithm 3, consider the formulas
used for BFGS updating of B and H :

https://www.codecogs.com/eqnedit.php?latex=G_l%20%5Csucc%200#0
https://www.codecogs.com/eqnedit.php?latex=H_l#0
https://www.codecogs.com/eqnedit.php?latex=G%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=(s%5El_g)%5ETy_g%5El%20%3E%200#0
https://www.codecogs.com/eqnedit.php?latex=H_g%5El#0
https://www.codecogs.com/eqnedit.php?latex=(s%5El_g%20%2C%20y_g%5El%20)#0

Levenberg-Marquardt Damping for . Since may not be positive
definite, or may have very small positive eigenvalues, an Levenberg-Marquardt (LM) damping term is

added to make the Hessian-action BFGS stable; i.e., is used instead of , when is
updated. Specifically, Hessian action BFGS for is performed as

The pseudo-code for the entire algorithm is as follows.

https://www.codecogs.com/eqnedit.php?latex=A_l#0
https://www.codecogs.com/eqnedit.php?latex=A_l%20%3D%20%5Cmathbb%7BE%7D_i%5B(a_%7Bl-1%7D(i)%20(a_%7Bl-1%7D(i))%5ET%20)%5D%20%5Csucceq%200#0
https://www.codecogs.com/eqnedit.php?latex=A_l%20%2B%20%5Clambda_AI_A#0
https://www.codecogs.com/eqnedit.php?latex=A_l#0
https://www.codecogs.com/eqnedit.php?latex=H_a%5El#0
https://www.codecogs.com/eqnedit.php?latex=A_l#0

Implementation Details
For the experimentation part, we used the autoencoders with the same dimensions and loss functions as
those in the paper. Following are the details as given in the paper:

The task here is to reconstruct the input of the model. For example, in the case of MNIST we input the
flattened vector of pixel values and reconstruct these values in the output. The gradients are automatically
calculated using the backward() function in PyTorch. The implementation uses these gradients to compute
the rest of the expressions.

Results
Our first task was to replicate the main results from the paper. We obtained the plots as follows: Each row
corresponds to a dataset. The left column shows the training loss with respect to epochs and the right
column shows the training loss with respect to CPU time. We bounded the time to 500 CPU seconds so
that we could compare the performances for the same amount of compute. The hyperparameters are the
same as those recommended in the paper.

These plots match very closely with those in the paper. There are a few minor differences but the trends
and relative performances are exactly the same.

We also wanted to test the suitability of the second order methods in more “stochastic” situations, that is,
when the mini batch size is much smaller. We reran the training with a mini batch size of 100 and the best
set of hyperparameters for this batch size as mentioned in the appendix of the paper. Following is the
resulting plot for the MNIST dataset.

This again matches closely with the authors’ plots. It is evident from the plots that the second order
methods are holding up well even at lower mini batch sizes. This is especially important from a practical
perspective because for high dimensional datasets, it might be necessary to use much smaller mini batch
sizes.

Open Questions
Here are some next steps to try:

We can study the convergence analysis of general Kronecker Factor-based methods. We are currently
exploring one specific method but it can be generalized across multiple approaches.

Moreover, in the paper, the authors have focussed only on fully connected autoencoders. We can possibly
extend and evaluate the implementation of this method to Convolutional Neural Networks and Recurrent
Neural Networks.

Contribution
Atharva Anand Joshi: Ideation and Planning, Implementation, Experimentation, Literature Survey
Ketan Ramaneti: Theoretical Study, Evaluation, Experimentation, Literature Survey

References
1. Donald Goldfarb, Yi Ren, and Achraf Bahamou. 2020. Practical quasi-newton methods for

training deep neural networks. In Proceedings of the 34th International Conference on Neural
Information Processing Systems (NIPS'20). Curran Associates Inc., Red Hook, NY, USA, Article
201, proceedings.neurips.cc/paper/2020/file/192fc044e74dffea144f9ac5dc9f3395-Paper

2. A. Mokhtari and A. Ribeiro, "RES: Regularized Stochastic BFGS Algorithm," in IEEE
Transactions on Signal Processing, vol. 62, no. 23, pp. 6089-6104, Dec.1, 2014, doi:
10.1109/TSP.2014.2357775.

3. https://www.jmlr.org/papers/volume14/hennig13a/hennig13a.pdf
Philipp Hennig (MPI Intelligent Systems), Martin Kiefel (MPI for Intelligent Systems),
“Quasi-Newton Methods: A New Direction”, International Journal of Machine Learning
Research

4. Broyden, C. G.. “Quasi-Newton methods and their application to function minimisation.”
Mathematics of Computation 21 (1967): 368-381.

5. A. S. Berahas, M. Jahani, P. Richtárik & M. Takáč (2022) Quasi-Newton methods for machine
learning: forget the past, just sample, Optimization Methods and Software, 37:5, 1668-1704, DOI:
10.1080/10556788.2021.1977806

https://proceedings.neurips.cc/paper/2020/file/192fc044e74dffea144f9ac5dc9f3395-Paper.pdf
https://ieeexplore.ieee.org/document/6899692
https://www.jmlr.org/papers/volume14/hennig13a/hennig13a.pdf
https://arxiv.org/search/cs?searchtype=author&query=Hennig%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Kiefel%2C+M
https://doi.org/10.1080/10556788.2021.1977806

